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A bstract 

Some years ago Papapetrou and Corinatdesi applied Papapetrou's equations of motion 
of spinning particles to the case of motion in the Schwarzschild field. For the particular 
case of motion in the equatorial plane they found an extra integral of motion (in 
addition to the constants of energy and total angular momentum). We here give a group- 
theoretical interpretation to the origin of this constant by relating it to the Wigner- 
Lubanski constant known from the theory of representations of the Poincarg group. 

Some years ago Papapetrou developed equations of  mot ion for spinning 
particles that  later were applied to mot ion in the Schwarzschild field using the 
supplementary condit ion S i° = 0, where S"  v describes the spin of  the particle 
(Papapetrou, 1951 ; Corinaldesi and Papapetrou, 1951). The equations of  
motion were subsequently integrated and first integrals (constants of  motion)  
were obtained corresponding to the total  angular momentum J and the 
energy E. Apart  from some special cases the general condit ion for a mot ion in 
the equatorial plane 0 = 0 was found to be S 23 = S 12 = 0, with only S ~1 ~ 0. 
We here use Papapetrou's  original notat ion (except for denoting x 4 by x °)  
according to which 0 = 0 describes the equatorial plane rather than 0 = 7r/2, 
as is usually done. The physical meaning of  the above conditions is that the 
Cartesian components  of  the spin are given by Sx = Sy = 0, and Sz = rS ~3. 
In this particular case it was found that  there is an additional integral of  
motion,  de~oted by F.  

Nobody has ye t  found a group-theoretical explanation for the origin of  
this extra integral of  motion.  In this paper we relate this extra integral of  
mot ion  to a generalization into curved space of  the Wigner-Lubansld invariant, 
which is one of  the Casimir operators that occur in the theory o f  representa- 
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tions of the Poincar~ group and which characterizes the representation of the 
little group (Wigner, 1939, 1963). Its meaning in that case is the square of  the 
total angular momentum in the coordinate system in which the particle is at 
rest, multiplied by the square of the mass. More specifically we show below 
that the product of the constants E and F is related to a Wigner-Lubanski 
type of constant W by W = if2, where F = EF.  The explicit forms of E and 
are (Corinaldesi and Papapetrou, 1951) 

E = eU~(m + ms) = const (1) 

= r?(m + m s ) S  3a = const (2) 

Here (m + ms)  is an effective mass of the spinning particle, and a dot denotes 
differentiation with respect to the proper time s. The function eU is related 
to the Schwarzschild metric by ds 2 = eg d t  2 - e - g  dr 2 - rZ(dO 2 + cos20 d¢2). 

A generalized Wigner-Lubanski constant is now defined by 

r¢ = - g # ~ w g w v  (3) 

where 
wg = *Sgap  ~ (4) 

and *Sgv is the dual to the spin tensor S ~ ,  

lr  ~1/2 e Sc~/3 *Sgv = ~ ( - g )  gvc~ (5) 

Here e~78 is the Levi-Civita symbol with %123 = 1, and pa is the total linear 
momentum (kinetic plus spin contribution), 

pg = m u  g + u~DSg~/Ds (6) 

where DSg~/Ds  = S.,Ufu ~, a semicolon denotes covariant differentiation, and 
ug = dxg  /ds. 

In the particular case of motion in the equatorial plane 0 = 0 with only one 
nonvanishing component of spin S 13 4= 0 one obtains from equation (4) 

W0 = *S°2p2 (7) 

W 2 = *S20P 0 

whereas w 1 = w 3 = 0, since the only nonvanishing component of the dual spin 
tensor is *S02 = - *S2o, which is given in the present case by 

*S02 = - r 2 S  13 (8) 

Therefore one obtains 

W = - [gOO (Wo)2 + g22 (w 2)2 ] (9) 

A straightforward calculation then leads to the following expressions for 
pO and p2 : 

pO = t (m + ms)  
(10) 

p2 = 0 
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Accordingly 

W = -g22 (W2)2 

= [rSali(m + ms)] 2 (11) 

=/~2 

thus proving the statement made above. 
It is interesting to note that the Wigner-Lubanski constant o f  motion has a 

meaning that is independent of the energy in the case of  the spinning particle's 
motion. It can be shown that in the case of Vaidya's radiating Schwarzschild 
metric (Vaidya, 1943, 1951, 1953) the energy of the spinning particle is not 
conserved. In spite of that, the Wigner-Lubanski extra integral of  motion W is 
still a constant of the motion in the particular case of  motion in the plane 
(Carmeli et al., 1977). 

References 

Carmeli, M., Charach, Ch., and Kaye, M. (1977). Physical Review D, 15. 
Corinaldesi, E., and Papapetrou, A. (1951). Proceedings of the Royal Society of London, 

A209, 259. 
Papapetrou, A. (1951). Proceedings of the Royal Society of  London, A209, 248. 
Vaidya, P. C. (1943). Current Science, 12, 183. 
Vaidya, P. C. (1951). Proceedings of the Indian Academy of Science, A33, 264. 
Vaidya, P. C. (1953). Nature (London), 171,260. 
Wigner, E. P. (1939). Annals of Mathematics, 40, 149. 
Wigner, E. P. (1963). "Invariant quantum mechanical equations of motion." in 

TheoreticalPhysics. (International Atomic Energy Agency, Vienna), p. 59. 


